

WHAT IS PROSKOMMA?
A Scripture Runtime Engine that makes Scripture processing simple, fast,
flexible and memory-frugal

Key components:

● a content model for USFM and beyond
● succinct storage in working memory
● USFM/USX import
● JSON representations of the content model including

● PERF
● SOFRIA

● a GraphQL API (with or without a server!)
● a SAX-like render model

WHAT IS PROSKOMMA?
a project

● created by Mark Howe
● published on github and npmjs under an MIT licence
● financed initially by Unfolding Word and MVH Solutions
● SOFRIA development financed by Faith Comes By Hearing

a codebase

● about 12k lines of “vanilla” ES6 Javascriptcode in the core
● about 2.2k unit tests in the core

a community

● part of Open Component Ecosystem (Discord)

DEPLOYMENT OPTIONS
● in a Node command-line script
●

● via “vanilla” Node Express
●

● via an Apollo GraphQL server
●

● in a browser (tested with React, NextJS and Svelte)
●

● in Android (tested with Ionic/Cordova and React Native)
●

● in an Electron app

THE CONTENT MODEL
DocSet - collections of documents, (eg a Bible translation)
identified by configurable composite id (eg lang/abbr, org/lang/abbr…)

Document - (eg a book of the Bible)

Sequence - a flow of text
● the canonical content
● an introduction
● a heading
● a footnote…

Block – (eg a paragraph)

Item – what goes inside a block

THE CONTENT MODEL
Items may be

Tokens – printable characters classified by Unicode class into
● word-like
● whitespace
● punctuation

Grafts – links to another sequence:
● at the block level (eg headings, introductions…)
● at the item level (eg footnotes, cross-references…)

Scopes – something that wraps content, corresponding to
● character and word-level markup
● milestones
● chapters, verses...

THE CONTENT MODEL
The content model was originally designed for USFM, but also supports

Tables (with options to filter/sort by row, column, content…)

Trees (tested mainly with CLEAR syntax trees)

Key-Value lookup

SUCCINCT STORAGE
The Curse of XML/JSON Bloat

● documents represented in working memory as trees
● ∴ lots of 64-bit pointers
● ∴ working memory typically 10-30x the size of the serialized document

Succinct vs compressed data
● compressed data typically needs to be uncompressed before use
● succinct data is less compact but can be used in its relatively compact state

Succinct data in Proskomma
● uses JS typed arrays

● C-style memory blocks
● byte-level control
● around 300x faster than standard JS arrays

SUCCINCT STORAGE
Succinct storage tricks

● variable-length integers
● bit-level headers
● optimised for linear search, eg counted strings, record lengths
● content encoded by variable-length enums

So what?

● load and work with multiple, complete translations and sources in a browser
● sub-second serialization load/save of complete translations in native format
● “fast-enough” search etc via block-level indexing

DATA IMPORTATION
Lexers

● for USFM (regex-based)
● for USX (SAX-based)

Parser/Tidier

● restructures and indexes content

Succinctifier

● Builds enums and succinct documents

Pathways also exist for tabular and tree data...

JSON REPRESENTATIONS
PJMA – Proskomma JSON Model Architecture

● Reflects Proskomma model without succinct optimizations
● Supports document, table, tree and key-value lookup content
● Schema variants for two major use cases:

PERF – Proskomma Editor-Ready Format

● chapter/verses as empty milestones (so easy to move)
● Separate sequences linked by uid (so easy to update independently)

SOFRIA – Scripture Objects For Rendering In Applications

● chapter/verses as spans within paragraphs (so easy to select content)
● sequences nested within a single object (so easy to render in, eg, HTML)

JSON REPRESENTATIONS
PJMAS – Proskomma JSON Model Architecture (Succinct)

● corresponds very closely to Proskomma internals
● ideal for rapid loading and saving of Proskomma state
● one Proskomma docSet per PJMAS document (due to per-docSet enums)

GraphQL API
What is GraphQL?

● a query language developed by Facebook
● a standard implemented for most programming languages
● a solution to under-fetch and over-fetch

Isn’t GraphQL a server technology?

● typically yes, but the FB reference implementation includes no server code
● Proskomma provides a GraphQL interface via method calls
● Proskomma can also support production-ready server GraphQL via Apollo

GraphQL API
Why use GraphQL in Proskomma?

● It provides a way out of the ‘One Right Data Format’ argument by offering
● Scripture by paragraph
● Scripture by chapter and verse
● Scripture chunked by any combination of markup
● Arbitrary chapter/verse spans
● “just the text”
● Tokenised text with in-scope markup
● …

● It provides strong typing without Typescript
● The schema is self-documenting via the GraphQL endpoint
● A single query can return multiple types of content needed by the UI

STREAMING RENDERING
Why streaming?

● Low memory footprint
● convenient for reports and “document-shaped” output

ProskommaRender (legacy implementation), used for

● Epub generation
● PDF generation (via PagedJS)

PerfRender, used for

● PERF generation from Proskomma
● USFM export
● Arbitrary transforms on Scripture content

STREAMING RENDERING
SofriaRender, used for

● SOFRIA generation from Proskomma
● Rendering within apps (with “wrapped” chapters, verses, phrases…)

Identity Transforms for PERF and SOFRIA allow XSLT-style “copy and
change” functionality in JSON.

PERF/SOFRIA transforms can be combined into pipelines.

These pipelines may be developed interactively using the Perfidy application.

SUPPORT FOR EDITORS
Content within Proskomma may be modified using GraphQL mutations.

Modifications to succinct data structures are much slower than writes because
● enums need to be maintained
● data is stored in sequential blocks rather than as a tree with pointers

It therefore makes sense to avoid fine-grain (eg per-keystroke) modifications.

Epitelete middleware provides an API for editing PERF via a UI with
schema validation of content
multiple levels of undo/redo
optional stripping/merging of markup not needed by the editor (eg alignment)
support for report generation (eg checks, searches…)

Epitelete-PERF-HTML roundtrips PERF to editor-friendly HTML

RELATED PROJECTS
Epitelete

Middleware for PERF-based editors

Diegesis

A series of PoCs using Ionic (Cordova) and React

Proskomma-React-Hooks

Hooks to provide the most common Proskomma functionality “the React way”

NEXT STEPS
● Version 1.0 for ETEN summit (November 2022)

● Versions 1.X

● tighter PERF/SOFRIA schema
● closer PERF/SOFRIA integration
● optimisation of GraphQL endpoints for speed and memory usage
● faster/more flexible editing options
● pipelines go Turing complete (Project Prostheke)

● Version 2.0

● reworked succinct format
● formal spec for internals
● implementations in multiple languages

